UNIVERSITY OF ALBERTA

Introduction and Objective

The Euler/Cardan angles are a mathematical approach commonly used to quantify human three-dimensional joint rotations (1). Possible combinations include 'XYZ', 'XZY', 'YXZ', 'YZX', 'ZYX', and 'ZXY' ulletCrosstalk creates error that increases as the rotation about the second

- \bullet sequenced axis increases (1, 2).

The objective of this research was to determine which Euler/Cardan angles are accurate for representing joint rotation angles compared to measured values from a physical model.

• The physical model used for this project is an updated model from a previous study in the same lab (2).

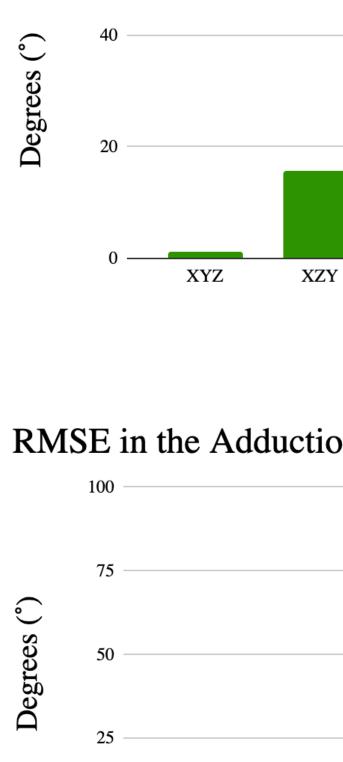
Methods

A physical model of the right hip joint was created that could be placed in known combinations of flexion/extension, adduction/abduction, medial/lateral rotation. • The proximal (pelvis) and distal (thigh) segments were defined using

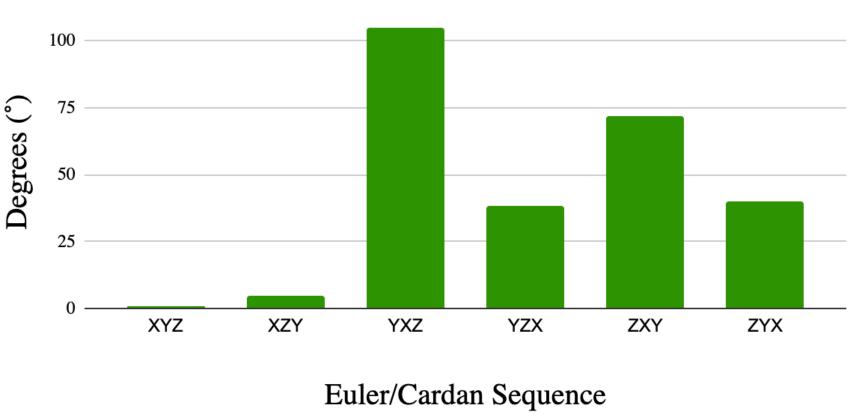
- retroreflective markers
- These markers were captured by 8 optoelectronic cameras recording at 200 Hz for 1 second.

There are 165 total possible combinations of the following angles • 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150° of flexion (X-axis), • -30°, 0°, and 30° of adduction-abduction (Y-axis), • -45°, -30°, 0°, 30°, and 45° of lateral rotation-medial rotation (Z-axis)

Marker data were labelled in Qualisys Track Manager and processed in Visual 3D

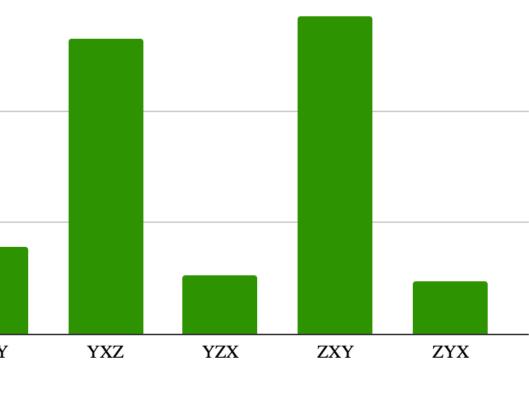

The Euler/Cardan angles were calculated for each rotation segment with both the proximal and distal segments as the reference segment.

• The root mean square error (RMSE) between the calculated and measured hip joint angles was determined to compare the 6 Euler/Cardan sequences.

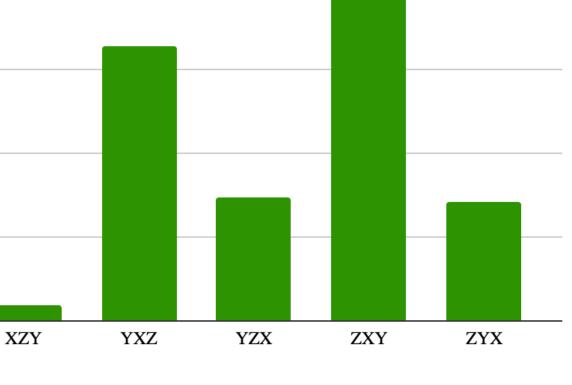

How Accurately Can We Quantify Hip Joint Angles with Motion Analysis and the Euler/Cardan Angles?

With the proximal segment as the reference, the 'XYZ' sequence was the most accurate (RMSE X = 1.1° , RMSE Y = 0.7° , RMSE Z = 0.9°). With the distal segment as the reference, the 'ZYX' sequence was the most accurate with the same RMSE.

from = 4.6° - 104.7° . RMSE in the Flexion/Extension (X) Axis



XYZ


Results

Other Euler/Cardan sequences resulted in larger errors ranging

Euler/Cardan Sequence

RMSE in the Adduction/Abduction (Y) Axis

Euler/Cardan Sequence

RMSE in the Internal/External Rotation (Z) Axis

Conclusion

Due to crosstalk, the second axis in the rotation sequence must be the adduction/abduction axis to minimize error as it has the smallest magnitude Either the 'XYZ' (with the proximal segment as reference) or 'ZYX' (with the distal segment as reference) Euler-Cardan sequences should be used for biomechanical analyses • These are the most accurate compared to a physical model representing hip joint rotations.

Acknowledgements

This project was supported by the Human Performance Fund (HPF), University of Alberta.

References

1. Sinclair, J. et al. (2012). Influence of the helical and six available Cardan sequences on 3D ankle joint kinematic parameters. Sports Biomechanics, 11(3), 430-437.

2. Dæhlin, T. E. and Chiu, L.Z.F. (2019). A physical model to quantify error in determining hip joint angles using Euler/Cardan angles. Conference proceedings: International Society of Biomechanics Conference, Calgary, AB, Canada, 2019.